Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 974188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059465

RESUMO

High doses of interleukin-2 (IL-2) have been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy, with a ~15% response rate. Remarkably, 7%-9% of patients achieve complete or long-lasting responses. Many patients treated with IL-2 experienced an expansion of regulatory T cells (Tregs), specifically the expansion of ICOS+ highly suppressive Tregs, which correlate with worse clinical outcomes. This partial efficacy together with the high toxicity associated with the therapy has limited the use of IL-2-based therapy. Taking into account the understanding of IL-2 structure, signaling, and in vivo functions, some efforts to improve the cytokine properties are currently under study. In previous work, we described an IL-2 mutein with higher antitumor activity and less toxicity than wtIL-2. Mutein was in silico designed for losing the binding capacity to CD25 and for preferential stimulation of effector cells CD8+ and NK cells but not Tregs. Mutein induces a higher anti-metastatic effect than wtIL-2, but the extent of the in vivo antitumor activity was still unexplored. In this work, it is shown that mutein induces a strong antitumor effect on four primary tumor models, being effective even in those models where wtIL-2 does not work. Furthermore, mutein can change the in vivo balance between Tregs and T CD8+ memory/activated cells toward immune activation, in both healthy and tumor-bearing mice. This change reaches the tumor microenvironment and seems to be the major explanation for mutein efficacy in vivo.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Neoplasias , Linfócitos T Reguladores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Interleucina-2/genética , Interleucina-2/imunologia , Melanoma , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
2.
Sci Immunol ; 7(73): eabm6931, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905286

RESUMO

Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to ß1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on ß1 integrin binding to collagen IV and showed that ß1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of ß1 integrin expression by T lymphocytes decreased TCR αß+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or ß1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged ß1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.


Assuntos
Linfócitos Intraepiteliais , Animais , Colágeno , Células Epiteliais/metabolismo , Integrinas/metabolismo , Ligantes , Camundongos
3.
Mucosal Immunol ; 15(1): 176-187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462572

RESUMO

Although murine γδ T cells are largely considered innate immune cells, they have recently been reported to form long-lived memory populations. Much remains unknown about the biology and specificity of memory γδ T cells. Here, we interrogated intestinal memory Vγ4 Vδ1 T cells generated after foodborne Listeria monocytogenes (Lm) infection to uncover an unanticipated complexity in the specificity of these cells. Deep TCR sequencing revealed that a subset of non-canonical Vδ1 clones are selected by Lm infection, consistent with antigen-specific clonal expansion. Ex vivo stimulations and in vivo heterologous challenge infections with diverse pathogenic bacteria revealed that Lm-elicited memory Vγ4 Vδ1 T cells are broadly reactive. The Vγ4 Vδ1 T cell recall response to Lm, Salmonella enterica serovar Typhimurium (STm) and Citrobacter rodentium was largely mediated by the γδTCR as internalizing the γδTCR prevented T cell expansion. Both broadly-reactive canonical and pathogen-selected non-canonical Vδ1 clones contributed to memory responses to Lm and STm. Interestingly, some non-canonical γδ T cell clones selected by Lm infection also responded after STm infection, suggesting some level of cross-reactivity. These findings underscore the promiscuous nature of memory γδ T cells and suggest that pathogen-elicited memory γδ T cells are potential targets for broad-spectrum anti-infective vaccines.


Assuntos
Infecções Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Citrobacter rodentium/fisiologia , Listeria monocytogenes/fisiologia , Células T de Memória/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Salmonella typhi/fisiologia , Animais , Antígenos de Bactérias/imunologia , Células Cultivadas , Reações Cruzadas , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Heteróloga , Células T de Memória/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Especificidade do Receptor de Antígeno de Linfócitos T
4.
Front Immunol ; 12: 666088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012449

RESUMO

The intestine harbors a complex community of bacterial species collectively known as commensal microbiota. Specific species of resident bacteria, as known as pathobiont, have pathogenic potential and can induce apparent damage to the host and intestinal inflammation in a certain condition. However, the host immune factors that permit its commensalism under steady state conditions are not clearly understood. Here, we studied the gut fitness of Listeria monocytogenes by using germ-free (GF) mice orally infected with this food-borne pathogen. L. monocytogenes persistently exists in the gut of GF mice without inducing chronic immunopathology. L. monocytogenes at the late phase of infection is not capable of infiltrating through the intestinal barrier. L. monocytogenes established the commensalism through the reversible down regulation of virulence gene expression. CD8+ T cells were found to be sufficient for the commensalism of L. monocytogenes. CD8+ T cells responding to L. monocytogenes contributed to the down-regulation of virulence gene expression. Our data provide important insights into the host-microbe interaction and have implications for developing therapeutics against immune disorders induced by intestinal pathogens or pathobionts.


Assuntos
Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Listeria monocytogenes/fisiologia , Simbiose , Animais , Linfócitos T CD8-Positivos/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Vida Livre de Germes/imunologia , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Camundongos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Virulência/genética
5.
Front Immunol ; 11: 1897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849649

RESUMO

Retinal dehydrogenase (RALDH) enzymatic activities catalyze the conversion of vitamin A to its metabolite Retinoic acid (RA) in intestinal dendritic cells (DCs) and promote immunological tolerance. However, precise understanding of the exogenous factors that act as initial trigger of RALDH activity in these cells is still evolving. By using germ-free (GF) mice raised on an antigen free (AF) elemental diet, we find that certain components in diet are critically required to establish optimal RALDH expression and activity, most prominently in small intestinal CD103+CD11b+ DCs (siLP-DCs) right from the beginning of their lives. Surprisingly, systematic screens using modified diets devoid of individual dietary components indicate that proteins, starch and minerals are dispensable for this activity. On the other hand, in depth comparison between subtle differences in dietary composition among different dietary regimes reveal that adequate glucose concentration in diet is a critical determinant for establishing RALDH activity specifically in siLP-DCs. Consequently, pre-treatment of siLP-DCs, and not mesenteric lymph node derived MLNDCs with glucose, results in significant enhancement in the in vitro generation of induced Regulatory T (iTreg) cells. Our findings reveal previously underappreciated role of dietary glucose concentration in establishing regulatory properties in intestinal DCs, thereby extending a potential therapeutic module against intestinal inflammation.


Assuntos
Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Células Dendríticas/efeitos dos fármacos , Açúcares da Dieta/administração & dosagem , Glucose/administração & dosagem , Cadeias alfa de Integrinas/metabolismo , Intestino Delgado/efeitos dos fármacos , Retinal Desidrogenase/metabolismo , Ração Animal , Animais , Antígenos CD/imunologia , Antígeno CD11b/imunologia , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Intestino Delgado/enzimologia , Intestino Delgado/imunologia , Camundongos Endogâmicos C57BL , Retinal Desidrogenase/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
6.
Oncoimmunology ; 9(1): 1681869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002288

RESUMO

IL-2 is a pleiotropic cytokine that plays an essential role in the survival, expansion, and function of CD8 T cells, regulatory T cells (Tregs), and natural killer (NK) cells. Previous studies showed that binding IL-2 with an anti-IL-2 monoclonal antibody (mAb) with a particular specificity could block its interaction with IL-2Rα, which is mainly expressed on Tregs. This selectivity can enhance the anti-tumor effects of IL-2 by activating CD8 T and NK cells, while disfavoring Treg stimulation. Based on this, we newly developed a series of anti-human IL-2 (hIL-2) mAbs (TCB1-3) that selectively stimulate CD8 T and NK cells without overtly activating Tregs. Among them, the hIL-2/TCB2 complex (hIL-2/TCB2c) exerted the best efficacy by inducing a prodigious expansion of host memory phenotype (MP) CD8 T (60-fold) and NK cells (18-fold) with less efficient Treg proliferation (5-fold). As a result, there was an average eightfold increase in the ratio of MP CD8 to Tregs. Accordingly, hIL-2/TCB2c strongly inhibited the growth of B16F10, MC38, and CT26 tumors. More remarkably, hIL-2/TCB2c showed synergy with checkpoint inhibitors such as anti-CTLA-4 or PD1 antibodies, and resulted in almost complete regression of implanted tumors and resistance to secondary tumor challenge. For direct clinical use, we generated a humanized form of TCB2 that had equal immunostimulatory and anti-tumor efficacy as a murine one. Collectively, these results show that TCB2 can provide a potent immunotherapeutic modality either alone or together with checkpoint inhibitors in cancer patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Interleucina-2 , Neoplasias Experimentais/terapia , Receptores de Interleucina-2 , Animais , Linfócitos T CD8-Positivos , Humanos , Interleucina-2/imunologia , Células Matadoras Naturais , Camundongos
7.
Front Immunol ; 10: 2432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681315

RESUMO

The primary induction sites for intestinal IgA are the gut-associated lymphoid tissues (GALT), such as Peyer's patches (PPs) and isolated lymphoid follicles (ILFs). The commensal microbiota is known to contribute to IgA production in the gut; however, the role of dietary antigens in IgA production is poorly understood. To understand the effect of dietary antigens on IgA production, post-weaning mice were maintained on an elemental diet without any large immunogenic molecules. We found that dietary antigens contribute to IgA production in PPs through induction of follicular helper T cells and germinal center B cells. The role of dietary antigens in the PP responses was further confirmed by adding bovine serum albumin (BSA) into the elemental diet. Although dietary antigens are important for PP responses, they have fewer effects than the microbiota on the development and maturation of ILFs. Furthermore, we demonstrated that dietary antigens are essential for a normal antigen-specific IgA response to Salmonella typhi serovar Typhimurium infection. These results provide new insights into the role of dietary antigens in the regulation of mucosal immune responses.


Assuntos
Antígenos , Dieta , Centro Germinativo/imunologia , Nódulos Linfáticos Agregados , Animais , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Centro Germinativo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Salmonella/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
8.
Blood ; 134(16): 1312-1322, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31387916

RESUMO

The microbiota regulate hematopoiesis in the bone marrow (BM); however, the detailed mechanisms remain largely unknown. In this study, we explored how microbiota-derived molecules (MDMs) were transferred to the BM and sensed by the local immune cells to control hematopoiesis under steady-state conditions. We reveal that MDMs, including bacterial DNA (bDNA), reach the BM via systemic blood circulation and are captured by CX3CR1+ mononuclear cells (MNCs). CX3CR1+ MNCs sense MDMs via endolysosomal Toll-like receptors (TLRs) to produce inflammatory cytokines, which control the basal expansion of hematopoietic progenitors, but not hematopoietic stem cells, and their differentiation potential toward myeloid lineages. CX3CR1+ MNCs colocate with hematopoietic progenitors at the perivascular region, and the depletion of CX3CR1+ MNCs impedes bDNA influx into the BM. Moreover, the abrogation of TLR pathways in CX3CR1+ MNCs abolished the microbiota effect on hematopoiesis. These studies demonstrate that systemic MDMs control BM hematopoiesis by producing CX3CR1+ MNC-mediated cytokines in the steady-state.


Assuntos
Células da Medula Óssea/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Leucócitos Mononucleares/metabolismo , Microbiota/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Adv ; 5(5): eaaw1507, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31131325

RESUMO

Immunoglobulin E (IgE), a key mediator in allergic diseases, is spontaneously elevated in mice with disrupted commensal microbiota such as germ-free (GF) and antibiotics-treated mice. However, the underlying mechanisms for aberrant IgE elevation are still unclear. Here, we demonstrate that food antigens drive spontaneous IgE elevation in GF and antibiotics-treated mice by generating T helper 2 (TH2)-skewed T follicular helper (TFH) cells in gut-associated lymphoid tissues (GALTs). In these mice, depriving contact with food antigens results in defective IgE elevation as well as impaired generation of TFH cells and IgE-producing cells in GALT. Food antigen-driven TFH cells in GF mice are mostly generated in early life, especially during the weaning period. We also reveal that food antigen-driven TFH cells in GF mice are actively depleted by colonization with commensal microbiota. Thus, our findings provide a possible explanation for why the perturbation of commensal microbiota in early life increases the occurrence of allergic diseases.


Assuntos
Antígenos/imunologia , Hipersensibilidade Alimentar/imunologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina E/imunologia , Alérgenos/imunologia , Animais , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Vida Livre de Germes , Sistema Imunitário , Imunoglobulina E/sangue , Linfonodos/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Simbiose
10.
Mol Cells ; 42(4): 313-320, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30841027

RESUMO

Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of CD8αß IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced CD8αß IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of CD8αß IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.


Assuntos
Antígenos CD8/metabolismo , Intestino Delgado/imunologia , Linfócitos Intraepiteliais/imunologia , Microbiota/imunologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Dieta , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Linfócitos Intraepiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Triticum/imunologia , Desmame , Leveduras/imunologia , Zea mays/imunologia
11.
BMB Rep ; 52(4): 283-288, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30885291

RESUMO

Foxp3+ regulatory CD4+ T (Treg) cells play an essential role in preventing overt immune responses against self and innocuous foreign antigens. Selective expansion of endogenous Treg cells in response to the administration of interleukin (IL)-2/antibody complex, such as the IL-2/JES6-1 complex (IL-2C) in mice, is considered an attractive therapeutic approach to various immune disorders. Here, we investigated the therapeutic potential of IL-2C in allergic airway inflammation models. IL-2C treatment ameliorated Th17-mediated airway inflammation; however, unexpectedly, IL-2C treatment exacerbated Th2-mediated allergic airway inflammation by inducing the selective expansion of Th2 cells and type-2 innate lymphoid cells. We also found that IL-2 signaling is required for the expansion of Th2 cells in lymphoproliferative disease caused by Treg cell depletion. Our data suggest that IL-2C is selectively applicable to the treatment of allergic airway diseases depending on the characteristics of airway inflammation. [BMB Reports 2019; 52(4): 283-288].


Assuntos
Fatores de Transcrição Forkhead/imunologia , Interleucina-2/imunologia , Interleucina-2/farmacologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/terapia , Células Th2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Asma/imunologia , Asma/terapia , Citocinas/imunologia , Hipersensibilidade/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia
12.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30783017

RESUMO

A lacteal is a blunt-ended, long, tube-like lymphatic vessel located in the center of each intestinal villus that provides a unique route for drainage of absorbed lipids from the small intestine. However, key regulators for maintaining lacteal integrity are poorly understood. Here, we explore whether and how the gut microbiota regulates lacteal integrity. Germ depletion by antibiotic treatment triggers lacteal regression during adulthood and delays lacteal maturation during the postnatal period. In accordance with compromised lipid absorption, the button-like junction between lymphatic endothelial cells, which is ultrastructurally open to permit free entry of dietary lipids into lacteals, is significantly reduced in lacteals of germ-depleted mice. Lacteal defects are also found in germ-free mice, but conventionalization of germ-free mice leads to normalization of lacteals. Mechanistically, VEGF-C secreted from villus macrophages upon MyD88-dependent recognition of microbes and their products is a main factor in lacteal integrity. Collectively, we conclude that the gut microbiota is a crucial regulator for lacteal integrity by endowing its unique microenvironment and regulating villus macrophages in small intestine.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/metabolismo , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fatores Etários , Animais , Transporte Biológico , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Imunofluorescência , Absorção Intestinal , Mucosa Intestinal/citologia , Mucosa Intestinal/ultraestrutura , Metabolismo dos Lipídeos , Camundongos , Microvasos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais
13.
Mol Cells ; 42(3): 228-236, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30759969

RESUMO

CD4 T cells differentiate into RORγt/IL-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.


Assuntos
Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Animais , Antígenos/metabolismo , Bactérias/crescimento & desenvolvimento , Proliferação de Células , Contagem de Colônia Microbiana , Fezes/microbiologia , Intestino Delgado/ultraestrutura , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processos Estocásticos , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 116(3): 1007-1016, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598454

RESUMO

T cells proliferate vigorously following acute depletion of CD4+ Foxp3+ T regulatory cells [natural Tregs (nTregs)] and also when naive T cells are transferred to syngeneic, nTreg-deficient Rag1-/- hosts. Here, using mice raised in an antigen-free (AF) environment, we show that proliferation in these two situations is directed to self ligands rather than food or commensal antigens. In both situations, the absence of nTregs elevates B7 expression on host dendritic cells (DCs) and enables a small subset of naive CD4 T cells with high self affinity to respond overtly to host DCs: bidirectional T/DC interaction ensues, leading to progressive DC activation and reciprocal strong proliferation of T cells accompanied by peripheral Treg (pTreg) formation. Likewise, high-affinity CD4 T cells proliferate vigorously and form pTregs when cultured with autologous DCs in vitro in the absence of nTregs: this anti-self response is MHCII/peptide dependent and elicited by the raised level of B7 on cultured DCs. The data support a model in which self tolerance is imposed via modulation of CD28 signaling and explains the pathological effects of superagonistic CD28 antibodies.


Assuntos
Proliferação de Células , Células Dendríticas/imunologia , Tolerância Imunológica , Modelos Imunológicos , Linfócitos T Reguladores/imunologia , Animais , Antígenos B7/genética , Antígenos B7/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Células Dendríticas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia
15.
Aging Cell ; 18(1): e12865, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430748

RESUMO

In youth, thymic involution curtails production of new naïve T cells, placing the onus of T-cell maintenance upon secondary lymphoid organs (SLO). This peripheral maintenance preserves the size of the T-cell pool for much of the lifespan, but wanes in the last third of life, leading to a dearth of naïve T cells in blood and SLO, and contributing to suboptimal immune defense. Both keratinocyte growth factor (KGF) and sex steroid ablation (SSA) have been shown to transiently increase the size and cellularity of the old thymus. It is less clear whether this increase can improve protection of old animals from infectious challenge. Here, we directly measured the extent to which thymic rejuvenation benefits the peripheral T-cell compartment of old mice and nonhuman primates. Following treatment of old animals with either KGF or SSA, we observed robust rejuvenation of thymic size and cellularity, and, in a reporter mouse model, an increase in recent thymic emigrants (RTE) in the blood. However, few RTE were found in the spleen and even fewer in the lymph nodes, and SSA-treated mice showed no improvement in immune defense against West Nile virus. In parallel, we found increased disorganization and fibrosis in old LN of both mice and nonhuman primates. These results suggest that SLO defects with aging can negate the effects of successful thymic rejuvenation in immune defense.


Assuntos
Envelhecimento/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fibrose , Hormônios Esteroides Gonadais/metabolismo , Linfonodos/efeitos dos fármacos , Camundongos , Primatas , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Timo/imunologia
16.
Sci Immunol ; 3(28)2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341145

RESUMO

Dysregulation of intestinal microflora is linked to inflammatory disorders associated with compromised immunosuppressive functions of Foxp3+ T regulatory (Treg) cells. Although mucosa-associated commensal microbiota has been implicated in Treg generation, molecular identities of the "effector" components controlling this process remain largely unknown. Here, we have defined Bifidobacterium bifidum as a potent inducer of Foxp3+ Treg cells with diverse T cell receptor specificity to dietary antigens, commensal bacteria, and B. bifidum itself. Cell surface ß-glucan/galactan (CSGG) polysaccharides of B. bifidum were identified as key components responsible for Treg induction. CSGG efficiently recapitulated the activity of whole bacteria and acted via regulatory dendritic cells through a partially Toll-like receptor 2-mediated mechanism. Treg cells induced by B. bifidum or purified CSGG display stable and robust suppressive capacity toward experimental colitis. By identifying CSGG as a functional component of Treg-inducing bacteria, our studies highlight the immunomodulatory potential of CSGG and CSGG-producing microbes.


Assuntos
Bifidobacterium bifidum/imunologia , Fatores de Transcrição Forkhead/imunologia , Polissacarídeos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bifidobacterium bifidum/citologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Front Immunol ; 9: 1907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190718

RESUMO

The fast and intense proliferative responses have been well documented for naïve T cells adoptively transferred into chronic lymphopenic hosts. This response known as spontaneous proliferation (SP), unlike antigen-independent lymphopenia-induced proliferation (LIP), is driven in a manner dependent on antigens derived from commensal microbiota. However, the precise nature of the SP response and its impact on homeostasis and function for T cells rapidly responding under this lymphopenic condition are still unclear. Here we demonstrate that, when naïve T cells were adoptively transferred into specific pathogen-free (SPF) but not germ-free (GF) RAG-/- hosts, the SP response of these cells substantially affects the intensity and tempo of the responding T cells undergoing LIP. Therefore, the resulting response of these cells in SPF RAG-/- hosts was faster and stronger than the typical LIP response observed in irradiated B6 hosts. Although the intensity and tempo of such augmented LIP in SPF RAG-/- hosts were analogous to those of antigen-dependent SP, the former was independent of antigenic stimulation but most importantly, dependent on IL-2. Similar observations were also apparent in other acute lymphopenic settings where antigen-dependent T cell activation can strongly occur and induce sufficient levels of IL-2 production. Consequently, the resulting T cells undergoing IL-2-driven strong proliferative responses showed the ability to differentiate into functional effector and memory cells that can control infectious pathogens. These findings therefore reveal previously unappreciated role of IL-2 in driving the intense form of T cell proliferative responses in chronic lymphopenic hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/metabolismo , Transferência Adotiva , Animais , Antígenos/imunologia , Bactérias/imunologia , Proliferação de Células , Memória Imunológica , Imunofenotipagem , Interleucina-2/genética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
19.
Front Immunol ; 9: 437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616017

RESUMO

A relatively high affinity/avidity of T cell receptor (TCR) recognition for self-peptide bound to major histocompatibility complex II (self-pMHC) ligands is a distinctive feature of CD4 T regulatory (Treg) cells, including their development in the thymus and maintenance of their suppressive functions in the periphery. Despite such high self-reactivity, however, all thymic-derived peripheral Treg populations are neither homogenous in their phenotype nor uniformly immune-suppressive in their function under steady state condition. We show here that based on the previously defined heterogeneity in the phenotype of peripheral Treg populations, Ly6C expression on Treg marks a lower degree of activation, proliferation, and differentiation status as well as functional incompetence. We also demonstrate that Ly6C expression on Treg in a steady state is either up- or downregulated depending on relative amounts of tonic TCR signals derived from its contacts with self-ligands. Interestingly, peripheral appearance and maintenance of these Ly6C-expressing Treg cells largely differed in an age-dependent manner, with their proportion being continuously increased from perinatal to young adult period but then being gradually declined with age. The reduction of Ly6C+ Treg in the aged mice was not due to their augmented cell death but rather resulted from downregulation of Ly6C expression. The Ly6C downregulation was accompanied by proliferation of Ly6C+ Treg cells and subsequent change into Ly6C- effector Treg with concomitant restoration of immune-suppressive activity. Importantly, we found that this phenotypic and functional change of Ly6C+ Treg is largely driven by conventional effector T cell population. Collectively, these findings suggest a potential cross-talk between peripheral Treg subsets and effector T cells and provides better understanding for Treg homeostasis and function on maintaining self-tolerance.


Assuntos
Envelhecimento/imunologia , Diferenciação Celular , Tolerância a Antígenos Próprios , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Antígenos Ly/metabolismo , Autoantígenos/imunologia , Proliferação de Células , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...